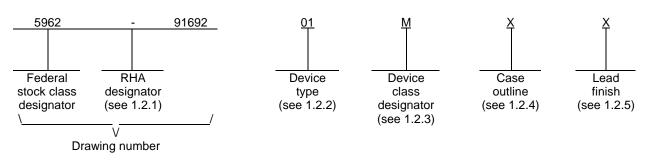
								F	REVISI	ONS										
LTR						DESCF	RIPTIO	N					DA	TE (YF	R-MO-D	DA)		APPR	ROVED	
A	Draw	ving up	dated to	o reflect	t curre	nt requ	iremen	ts Ig	t					02-0)4-18		R	laymon	d Monr	nin
REV															1					
SHEET																				
REV																				
SHEET																				
REV STATUS				REV	/		А	Α	А	Α	Α	Α	Α	А	А	Α	Α	A	Α	Α
OF SHEETS				SHE	ET		1	2	3	4	5	6	7	8	9	10	11	12	13	14
PMIC N/A				Da	an Wo	nnell		•	I		DI				Y CE				2 13 14 IBUS -BIT, FHIC	
STAN MICRO DRA		CUIT		CHE(S	CKED Sandra	BY Roone	у			COLUMBUS, OHIO 43216 http://www.dscc.dla.mil				BUS BIT, HIC						
THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS			BLE	APPROVED BY Michael A. Frye				MICROCIRCUIT, LINEAR, CMOS, 16-BIT, 20 KHz, A/D CONVERTER, MONOLITHIC SILICON												
AND AGEN DEPARTMEN	IT OF [DEFEN		DRA	WING			ATE												
AMS	SC N/A	L.		REVI	ISION					,	٩		GE CC 67268			5	5962-	9169	2	
				SHEET 1 2 3 4 PREPARED BY Dan Wonnell PREPARED BY Dan Wonnell Image: Checked BY Sandra Rooney Image: Checked B	ET		1	OF	14											


DSCC FORM 2233 APR 97

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

1. SCOPE

1.1 <u>Scope</u>. This drawing documents two product assurance class levels consisting of high reliability (device classes Q and M) and space application (device class V). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels are reflected in the PIN.

1.2 <u>PIN</u>. The PIN is as shown in the following example:

1.2.1 <u>RHA designator</u>. Device classes Q and V RHA marked devices meet the MIL-PRF-38535 specified RHA levels and are marked with the appropriate RHA designator. Device class M RHA marked devices meet the MIL-PRF-38535, appendix A specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device.

1.2.2 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows:

Device type	Generic number	Circuit function	Linearity error
01	SEI5102A-S	16-bit, 20 kHz analog to digital converter 16-bit, 20 kHz analog to digital converter	±3.0 LSB
02	SEI5102A-T		±2.0 LSB

1.2.3 <u>Device class designator</u>. The device class designator is a single letter identifying the product assurance level as follows:

Device class		Device requirements de	ocumentation
Μ			ments for MIL-STD-883 compliant, non- ordance with MIL-PRF-38535, appendix A
Q or V	Certification an	d qualification to MIL-P	RF-38535
1.2.4 Case outline(s).	The case outline(s) are as designated	d in MIL-STD-1835 and	as follows:
Outline letter	Descriptive designator	Terminals	Package style

Х	GDIP1-T28 or CDIP2-T28	28	Dual-in-line
3	CQCC1-N28	28	Square leadless chip carrier

1.2.5 <u>Lead finish</u>. The lead finish is as specified in MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M.

DEFENSE SUPPLY CENTER COLUMBUS REVISION LEVEL SHEET	STANDARD MICROCIRCUIT DRAWING	SIZE 596	2-91692
	DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000	REVISION LEVEL SHEET	2

1.3 Absolute maximum ratings. 1/ 2/

Positive digital supply $(+V_D)$ voltage range Negative digital supply $(-V_D)$ voltage range	. +0.3 V dc to -6.0 V dc
Positive analog supply (+V _A) voltage range	
Negative analog supply (-V _A) voltage range	
Input current, any pin except supplies	.±10 mA <u>4</u> /
Analog input voltage (AIN and VREF pins)	$(-V_A) - 0.3 \text{ V dc to } (+V_A) + 0.3 \text{ V dc}$
Digital input voltage	0.3 V dc to (+V _A) + 0.3 V dc
Storage temperature range	65°C to +150°C
Lead temperature (soldering, 10 seconds)	. +260°C
Junction temperature (T _J)	.+160°C
Power dissipation (P _D)	. 72 mW
Thermal resistance, junction-to-case (θ_{JC})	. See MIL-STD-1835
Thermal resistance, junction-to-ambient (θ_{JA})	
Case J	. 40°C/W
Case 3	.60°C/W

1.4 <u>Recommended operating conditions</u>. <u>1</u>/

Ambient operating temperature range (T _A)	
Positive digital supply voltage (+V _D)	+4.50 V dc to +V _A
Negative digital supply voltage (-V _D)	4.50 V dc to -5.50 V dc
Positive analog supply voltage (+V _A)	+4.50 V dc to +5.50 V dc
Negative analog supply voltage (-V _A)	4.50 V dc to -5.50 V dc
Analog reference voltage (VREF)	+2.50 V dc to (+V _A) -0.5 V dc
Analog input voltage range:	
Unipolar	AGND V dc to V _{REF}
Bipolar	V _{REF} to V _{REF}

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those listed in the issue of the Department of Defense Index of Specifications and Standards (DoDISS) and supplement thereto, cited in the solicitation.

SPECIFICATION

DEPARTMENT OF DEFENSE

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

STANDARDS

DEPARTMENT OF DEFENSE

MIL-STD-883 -	Test Method Standard Microcircuits.
MIL-STD-1835 -	Interface Standard Electronic Component Case Outlines.

1/ All voltages referenced to AGND and DGND tied together.

2/ Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

- $\frac{3}{2}$ In addition, +V_D must not be greater than (+V_A) + 0.3 V dc.
- $\frac{1}{4}$ Transient currents of up to 100 mA will not cause latch-up.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-91692
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		A	3

HANDBOOKS

DEPARTMENT OF DEFENSE

MIL-HDBK-103 - List of Standard Microcircuit Drawings. MIL-HDBK-780 - Standard Microcircuit Drawings.

(Unless otherwise indicated, copies of the specification, standards, and handbooks are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. The individual item requirements for device class M shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein.

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q and V or MIL-PRF-38535, appendix A and herein for device class M.

3.2.1 Case outline. The case outline shall be in accordance with 1.2.4 herein.

3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 1.

3.2.3 Block diagram. The block diagram shall be as specified on figure 2.

3.3 <u>Electrical performance characteristics and postirradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table I and shall apply over the full ambient operating temperature range.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I.

3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in MIL-HDBK-103. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q and V shall be in accordance with MIL-PRF-38535. Marking for device class M shall be in accordance with MIL-PRF-38535, appendix A.

3.5.1 <u>Certification/compliance mark</u>. The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-PRF-38535. The compliance mark for device class M shall be a "C" as required in MIL-PRF-38535, appendix A.

3.6 <u>Certificate of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6.2 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and herein or for device class M, the requirements of MIL-PRF-38535, appendix A and herein.

3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 or for device class M in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-91692
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		A	4

3.8 <u>Notification of change for device class M</u>. For device class M, notification to DSCC-VA of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change as defined in MIL-PRF-38535, appendix A.

3.9 <u>Verification and review for device class M</u>. For device class M, DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

3.10 <u>Microcircuit group assignment for device class M</u>. Device class M devices covered by this drawing shall be in microcircuit group number 81 (see MIL-PRF-38535, appendix A).

4. QUALITY ASSURANCE PROVISIONS

4.1 <u>Sampling and inspection</u>. For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. For device class M, sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.

4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection. For device class M, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection.

4.2.1 Additional criteria for device class M.

- a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015.
 - (2) $T_A = +125^{\circ}C$, minimum.
- b. Interim and final electrical test parameters shall be as specified in table II herein.
- 4.2.2 Additional criteria for device classes Q and V.
 - a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - b. Interim and final electrical test parameters shall be as specified in table II herein.
 - c. Additional screening for device class V beyond the requirements of device class Q shall be as specified in MIL-PRF-38535, appendix B.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-91692
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		A	5

Test	Symbol	Conditions $-55^{\circ}C \leq T_{A} \leq +125^{\circ}C$	Group A	Device	-	<u>l</u> / nits	Unit
		unless otherwise specified	subgroups	type	Min	Max	l
Resolution for which no missing codes is guaranteed	RES	<u>2</u> /	1, 2, 3	All	16	Ινίαλ	Bits
Integral linearity error	INL	<u>2</u> /	1, 2, 3	01		±3.0	LSB
				02		±2.0	
Full-scale error	FSE	<u>2</u> /	1, 2, 3	01		±5.0	LSB
Tull apple arrow drift			0.0	02		±3.0	
Full-scale error drift	ΔFSE/Δt	<u>2/3/4/</u>	2, 3	All		±4.0	LSB
Unipolar offset error	VOFF	<u>2</u> /	1, 2, 3	01		±5.0	LSB
the stars drift		210141	0.0	02		±3.0	
Unipolar offset error drift	ΔVOFF/Δt	<u>2/3/4/</u>	2, 3	All		±4.0	LSB
Bipolar offset error	BOFF	<u>2</u> /	1, 2, 3	01		±5.0	LSB
				02		±3.0	
Bipolar offset error drift	ΔBOFF/Δt	<u>2/3/4/</u>	2, 3	All		±4.0	LSB
Bipolar negative full-scale error	BNFSE	<u>2</u> /	1, 2, 3	01		±5.0	LSB
Bipolar negative full-scale	∆BNFSE/∆t	<u>2/3/4/</u>	2, 3	All		±3.0	LSB
error drift			2, 5	All		±4.0	
Digital input voltage	VIH	<u>5/ 6/ 7/</u>	1, 2, 3	All	2.0		V
	VIL					0.8	
Digital input current	l _{IN}	<u>5/ 6/</u>	1, 2, 3	All		±10	μA
Digital output voltage	Vol	<u>5/ 6</u> / Logic "0", I _{SINK} = -1.6 mA	1, 2, 3	All		0.4	V
	V _{он}	<u>5</u> / <u>6</u> / Logic "1",			+VD		
		$I_{SOURCE} = 100 \ \mu A$			-1.0		
Positive analog supply current	l _A +	$2/6/8/ +V_{A} = 5.5 V dc$	1, 2, 3	All		3.5	mA
Negative analog supply current	I _A -	$2/6/8/ -V_{A} = -5.5 V dc$	1, 2, 3	All		-3.5	mA
Positive digital supply current	I _D +	$2/6/8/ +V_{D} = 5.5 V dc$	1, 2, 3	All		3.5	mA
Negative digital supply current	I _D -	$2/6/8/ -V_{D} = -5.5 V dc$	1, 2, 3	All		-2.5	mA
Analog input capacitance in fine charge mode	Cin	<u>2/3/</u> Unipolar mode	4	All		425	pF
5		2/3/ Bipolar mode				265	

TABLE I. Electrical performance characteristics.

See footnotes at end of table.

STANDARD
MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000

SIZE	
Α	

REVISION LEVEL

А

5962-91692 SHEET

6

Test	Symbol	Conditions $-55^{\circ}C \le T_{A} \le +125^{\circ}C$	Group A	Device		<u>1</u> / mits	Unit
	-	unless otherwise specified	subgroups	type	Min	Max	
Peak harmonic or spurious noise	S/PN	2/	4, 5, 6	01	Min 94	Max	dB
·p ······			ļ	02	98		
Signal to noise ratio	S/(N+D)	<u>2</u> /	4, 5, 6	01	87		dB
				02	90		
Acquisition time	t _{ACQ}	<u>2/3/9/</u>	9	All		9.375	μs
Conversion time	tc	<u>2/ 6/</u>	9, 10, 11	All		40.63	μs
Throughput	f _{tp}	<u>2</u> / <u>6</u> /	9, 10, 11	All	20	i l	kHz
RST pulse width	t _{rst}	<u>3/</u> <u>5/</u> <u>10</u> / (see figure 3)	9, 10, 11	All	150	i l	ns
$\frac{1}{1}$ CH1/ $\frac{1}{2}$ edge to $\frac{1}{1}$ TRK1, $\frac{1}{1}$	t _{DFSH4}	<u>5/ 6/ 10/ 11/</u> (see figure 4a)	9, 10, 11	All		68 t _{clk} +260	ns
HOLD to TRK1, TRK2, falling	t _{DFSH1}	<u>5/ 6/ 10/ 12/</u> (see figure 4b)	9, 10, 11	All	66 t _{clk}	68 t _{clk} +260	ns
HOLD pulse width	t _{hold}	<u>5/ 6/ 10/ 12/</u> (see figure 5)	9, 10, 11	All	1 t _{clk} +20	63 t _{clk}	ns
$\overline{\text{HOLD}}$ to CH1/ $\overline{2}$ edge	tdhlri	<u>5/ 6/ 10/ 12/</u> (see figure 5)	9, 10, 11	All	15	64 t _{cik}	ns
HOLD falling to CLKIN	tнсғ	<u>5/ 6/ 10/ 12/</u> (see figure 6)	9, 10, 11	All	95	1 t _{clk} +10	ns
SCLK input pulse period	t _{sclk}	<u>5/</u> <u>6/</u> <u>10</u> / (see figure 7a) PDT and RBT modes	9, 10, 11	All	200		ns
SCLK input pulse width Iow	^t sclkl	<u>5/</u> <u>6</u> / <u>10</u> / (see figure 7) PDT and RBT modes	9, 10, 11	All	50		ns
SCLK input pulse width high	tsclкн	<u>5/</u> <u>6</u> / <u>10</u> / (see figure 7) PDT and RBT modes	9, 10, 11	All	50		ns
SCLK input falling to SDATA valid	t _{DSS}	5/ 6/ 10/ (see figures 7 and 8) PDT and RBT modes	9, 10, 11	All		150	ns
SDATA valid before rising SCLK	tss	<u>5/6/10</u> / (see figure 8b) FRN and SSC modes	9, 10, 11	All	2 t _{clk} -100		ns
SDATA valid after rising SCLK	t _{sн}	<u>5/6/10</u> / (see figure 7b) FRN and SSC modes	9, 10, 11	All	2 t _{cik} -100		ns
Last rising SCLK to SDL rising	trsdl	<u>5/6/10</u> / (see figure 7b) FRN and SSC modes	9, 10, 11	All		2 t _{clk} +200	ns
HOLD falling to 1 st falling SCLK	thes	<u>5/6/10</u> / (see figure 7b) FRN and SSC modes	9, 10, 11	All	6 t _{cik}	8 t _{clk} +200	ns
HOLD falling to SDATA valid	t _{DHS}	<u>5/ 6/ 10</u> / (see figure 8a) PDT mode	9, 10, 11	All		230	ns

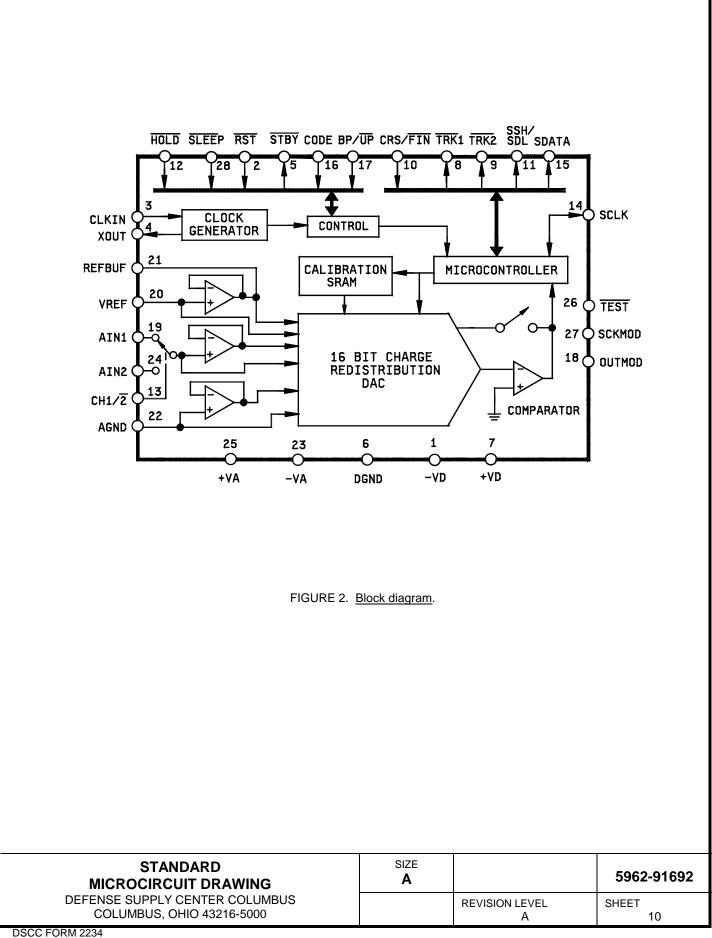
TABLE I. Electrical performance characteristics – Co	 Continued.

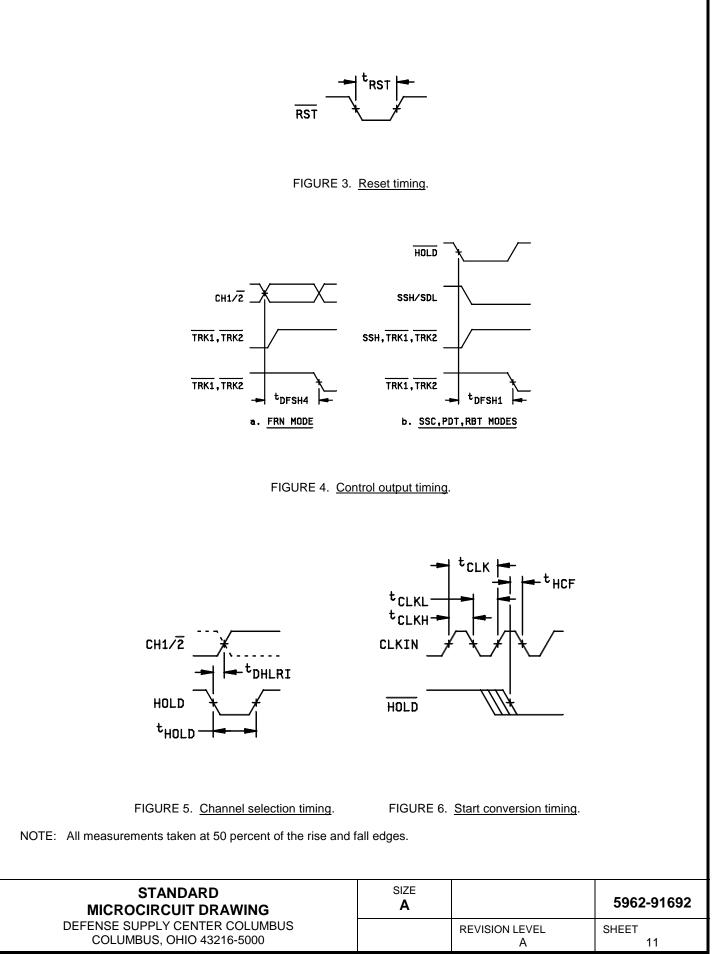
See footnotes at end of table.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-91692
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		A	7

Test	Symbol	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Group A subgroups	Device type		I/ nits	Unit
					Min	Max	
TRK1, TRK2 falling to SDATA valid	t _{dts}	<u>5/ 6/ 10/ 13/</u> (see figure 8b)	9, 10, 11	All		125	ns
CLKIN period	tс∟к	<u>3/5/6/10/14/</u> (see figure 6)	9, 10, 11	All	0.5	10	μs
CLKIN low time	tclkl	<u>5/ 6/ 10</u> / (see figure 6)	9, 10, 11	All	200		ns
CLKIN high time	t _{ськн}	5/ 6/ 10/ (see figure 6)	9, 10, 11	All	200		ns

 TABLE I.
 Electrical performance characteristics
 – Continued.


- 1/ The limiting terms "min" (minimum) and "max" (maximum) shall be considered to apply to magnitudes only. Negative current shall be defined as conventional current flow out of a device terminal.
- 2/ Unless otherwise specified, +V_A, +V_D = +5.0 V dc; -V_A, -V_D = -5.0 V dc; VREF = +4.5 V dc; CLKIN = 1.6 MHz; f_s = 20 kHz; bipolar mode; FRN mode; AIN1 and AIN2 tied together; each channel tested separately; analog source impedance = 50 Ω with 1000 pF to AGND; 200 Hz full scale input sine wave; error tests are done after calibration at the temperature of interest; logic "0" inputs are 0 V dc; logic "1" inputs are +V_D.
- 3/ This parameter shall be measured only for initial characterization and after process or design changes which may affect this parameter.
- $\underline{4}$ Total drift over -55°C to +125°C since calibration at power-up at +25°C .
- $\underline{5}'$ +V_A, +V_D = +5.0 V dc ±10 percent; -V_A, -V_D = -5.0 V dc ±10 percent.
- <u>6</u>/ This parameter is guaranteed, if not tested, at $T_A = +25^{\circ}C$. This parameter is tested at $T_A = -55^{\circ}C$ to $+125^{\circ}C$.
- <u>7</u>/ Guaranteed at $V_{IH} = 2.0 \text{ V dc}$, $V_{IL} = 0.8 \text{ V dc}$. Tested at $V_{IH} = +V_D$, $V_{IL} = 0 \text{ V dc}$.
- 8/ All outputs unloaded; inputs: Logic "0" = 0 V dc, Logic "1" = +V_D.
- 9/ Acquisition time is the time allowed by the converter for acquisition of the input voltage prior to conversion.
- <u>10</u>/ Inputs: Logic "0" = 0 V dc, Logic "1" = $+V_D$; C_L = 50 pF.
- 11/ These times are for FRN mode.
- 12/ These times are for SSC, PDT and RBT mode.
- 13/ Only valid for TRK1, TRK2 falling when SCLK is low. If SCLK is high when TRK1, TRK2 falls, then SDATA is valid t_{DSS} time after the next falling clock.
- 14/ Clock speeds of less than 1.6 MHz, at temperatures > +100°C, will degrade DNL performance. Minimum CLKIN period is 0.625 μs in FRN mode (20 kHz sample rate).


STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-91692
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		A	8

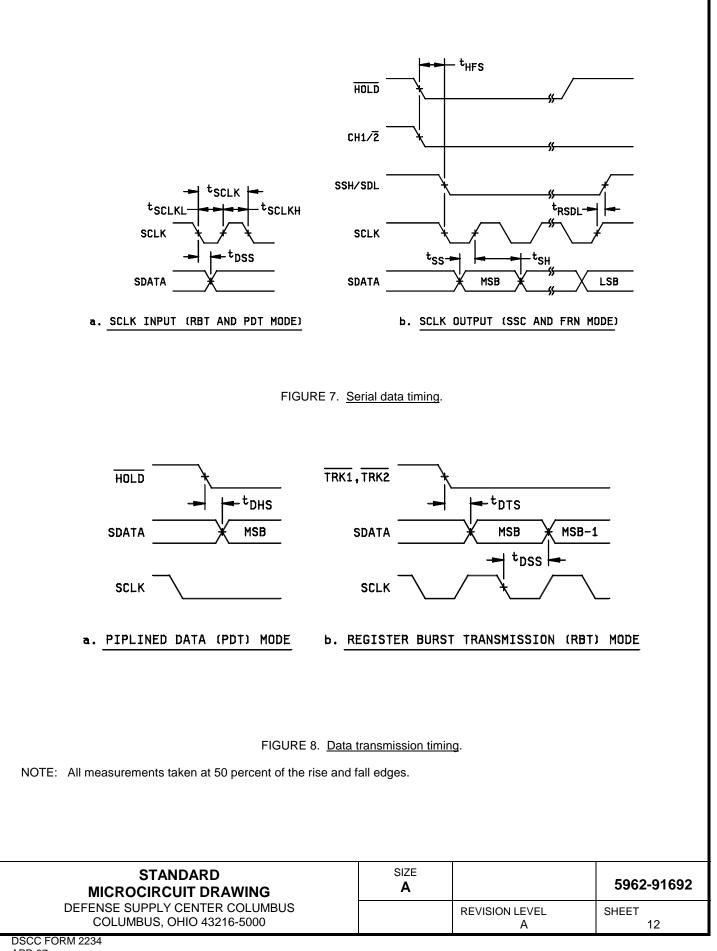

Device type	01 and 02
Case outline	X, 3
Terminal number	Terminal symbol
1	-V _D
2	RST
3	CLKIN
4	XOUT
5	STBY
6	DGND
7	+V _D
8	TRK1
9	TRK2
10	CRS/FIN
11	SSH/SDL
12	HOLD
13	CH1/2
14	SCLK
15	SDATA
16	CODE
17	BP/UP
18	OUTMOD
19	AIN1
20	V _{REF}
21	REFBUF
22	AGND
23	-V _A
24	AIN2
25	+V _A
26	TEST
27	SCKMOD
28	SLEEP

FIGURE 1. Terminal connections.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-91692
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		A	9

Test requirements	Subgroups (in accordance with MIL-STD-883, method 5005, table I)	(in acco	ogroups rdance with 88535, table III)
	Device class M	Device class Q	Device class V
Interim electrical	1, 4	1, 4	1, 4
parameters (see 4.2)	- 7 -	.,	- , -
Final electrical parameters (see 4.2)	<u>1</u> / 1, 2, 3, 4, 5, 6, 10, 11	<u>1</u> / 1, 2, 3, 4, 5, 6, 10, 11	<u>1</u> / 1, 2, 3, 4, 5, 6, 10, 11
Group A test requirements (see 4.4)	<u>2</u> / 1, 2, 3, 4, 5, 6, 9, 10, 11	<u>2/</u> 1, 2, 3, 4, 5, 6, 9, 10, 11	<u>2</u> / 1, 2, 3, 4, 5, 6, 9, 10, 11
Group C end-point electrical parameters (see 4.4)	1, 4, 9	1, 4, 9	1, 2, 3, 4, 5, 6, 9, 10, 11
Group D end-point electrical parameters (see 4.4)	1, 4, 9	1, 4, 9 1, 4, 9	
Group E end-point electrical parameters (see 4.4)			

TABLE II. Electrical test requirements.

1/ PDA applies to subgroup 1.

2/ Subgroup 9 will be guaranteed if not tested.

4.3 <u>Qualification inspection for device classes Q and V</u>. Qualification inspection for device classes Q and V shall be in accordance with MIL-PRF-38535. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

4.4 <u>Conformance inspection</u>. Technology conformance inspection for classes Q and V shall be in accordance with MIL-PRF-38535 including groups A, B, C, D, and E inspections and as specified herein. Quality conformance inspection for device class M shall be in accordance with MIL-PRF-38535, appendix A and as specified herein. Inspections to be performed for device class M shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

4.4.1 Group A inspection.

- a. Tests shall be as specified in table II herein.
- b. Subgroups 7 and 8 in table I, method 5005 of MIL-STD-883 shall be omitted.

4.4.2 Group C inspection. The group C inspection end-point electrical parameters shall be as specified in table II herein.

4.4.2.1 Additional criteria for device class M. Steady-state life test conditions, method 1005 of MIL-STD-883:

- a. Test condition D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
- b. $T_A = +125^{\circ}C$, minimum.
- b. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-91692
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		A	13

4.4.2.2 Additional criteria for device classes Q and V. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.

4.4.3 Group D inspection. The group D inspection end-point electrical parameters shall be as specified in table II herein.

4.4.4 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein).

- a. End-point electrical parameters shall be as specified in table II herein.
- b. For device classes Q and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535 for the RHA level being tested. For device class M, the devices shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535, appendix A for the RHA level being tested. All device classes must meet the postirradiation end-point electrical parameter limits as defined in table I at T_A = +25°C ±5°C, after exposure, to the subgroups specified in table II herein.
- c. When specified in the purchase order or contract, a copy of the RHA delta limits shall be supplied.

5. PACKAGING

5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M.

6. NOTES

6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor prepared specification or drawing.

6.1.2 Substitutability. Device class Q devices will replace device class M devices.

6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.

6.3 <u>Record of users</u>. Military and industrial users should inform Defense Supply Center Columbus when a system application requires configuration control and which SMD's are applicable to that system. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0544.

6.4 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA , Columbus, Ohio 43216-5000, or telephone (614) 692-0547.

6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331.

6.6 Sources of supply.

6.6.1 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DSCC-VA and have agreed to this drawing.

6.6.2 <u>Approved sources of supply for device class M</u>. Approved sources of supply for class M are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DSCC-VA.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-91692
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		A	14

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 02-04-18

Approved sources of supply for SMD 5962-91692 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535.

Standard	Vendor	Vendor
microcircuit drawing	CAGE	similar
PIN <u>1</u> /	number	PIN <u>2</u> /
5962-9169201MXA	68911	SEI5102A-SDB
5962-9169201M3A	68911	SEI5102A-SEB
5962-9169202MXA	68911	SEI5102A-TDB
5962-9169202M3A	68911	SEI5102A-TEB

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability.
- <u>2</u>/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE number Vendor name and address

68911

Maxwell Technologies Electronics Components Group, Inc. 9244 Balboa Ave. San Diego, CA 92123

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.